

Superhero Science

Tijana Prodanović

Faculty of Sciences, Novi Sad, Serbia

Univerza v Ljubljani \llbracket

Tijana Prodanovic @ Gimnazija Murska Sobota prodanvc@df.uns.ac.rs

How to become superhero?

- Radiation! No 1 cause of accidents that create superheroes!
- Peter Parker & Spiderman Bitten by radioactive spider
- Fantastic four
 - Cosmic rays
- Bruce Baner Hulk
 - Gamma rays

Radiation

- Radioactive decays nucleus breaks up and emits
 - Electrons and positrons
 - Alpha particles (helium)
 - Gamma rays (light)
 - Exposed at Earth
- Cosmic Rays

Space

- Radiation from Space
- electrons, protons (hydrogen)
- Gamma rays
- Exposed in atmosphere and

26.5.2016.

Tijana Prodanovic @ Gimnazija I prodanvc@df.uns.ac.rs

Super radiation?

- Exposure →mutations→super powers?
- Radiation damages cells and DNA, sometimes even death
- Visible, direct consequences
 - Large radiation doses
 - Burns, radiation sickness, sickness, hair loss
 - Death
- Invisible, delayed consequences
 - Damages to DNA and cells
 - Mutations cancer, cataract, effects on future children
- Radiation does not cause superpowers!
 Image: Second Se

Superman

- Natural superhero!
- From other planet (Krypton)
- Super powers
 - Can fly
 - Faster than a bullet
 - Stronger than a locomotive
 - X-ray and heath vision
- Super science or super fiction?

CHRISTOPHER REE

Is it a bird? Is it a plane?

- Super power: flying
- Not possible without wings or engine...
- But original Superman could "just" jump very high
- Explanation: gravity of planet Krypton is stronger than Earths?

First Superman comic from 1939

Gravity

- Gravity attractive force between massive bodies
- Newtons law of gravity:

 $F = G \frac{Mm}{R^2}$

- F force of gravity
- M mass of the first body
- m mass of the second body
- R distance between bodies
- G gravitational constant

Force is stronger for more massive and closer bodies

- Weight = force of gravity between a body and an object it stands on
 - Weight is larger on more massive and smaller objects (planets, satellites etc.)

$$F = G \frac{M}{R^2} m$$

 Weight changes, but not mass (without a diet)!

- Weight = force of gravity between a body and an object it stands on
 - Weight is larger on more massive and smaller objects (planets, satellites etc.)

$$F = G \frac{2M}{R^2} m$$

• 100 kg on Earth

 \circ On a planet twice as massive as Earth = 200 kg

- Weight = force of gravity between a body and an object it stands on
 - Weight is larger on more massive and smaller objects (planets, satellites etc.) $F = G \frac{M}{(2R)^2} m$
- 100 kg on Earth
 - o On a planet twice as large as Earth
 - = 25 kg

- Weight = force of gravity between a body and an object it stands on
 - Weight is larger on more massive and smaller objects (planets, satellites etc.)

$$F = G \frac{M/100}{\left(R/4\right)^2} m$$

100 kg on Earth =

 On Moon (1/4 radius of Earth 1/100 Earths mass) = 16 kg

Gravitational acceleration

 Gravitational acceleration – tells about the strenght of gravity on a body_{F-force of gravity}

$$g = G\frac{M}{R^2} = \frac{F}{m}$$

- - M mass of the first body
 - m mass of the second body
 - R distance between bodies
 - G gravitational constant
- Same for all objects around that body
 - A feather and a hammer will fall at the same time!

Apollo 15 Tijana Prodanovic @ Gimnazija prodanvc@df.uns.ac

Superman and gravity

- Our muscles used to Earth
- Superman's muscles used to Krypton
- Superman jumped more than 200m in height!
- How big should Krypton be for that to be possible?

Jump on Krypton

- Stronger the grav.
 Acceleration of Krypton is the higher would Superman jump on Earth
 - $\frac{g_K}{g_Z} = \frac{R_K}{R_Z} = \frac{\text{height of jump on Earth}}{\text{height of jump on Krypton}}$
- Superman on Krypton like Rožle Prezelj jumps 2,32 m
- For Superman to jump
 232m on Earth

Krypton must be 100 times larger than Earth!

v Ljubljani

Tijana Prodanovic @ Gimnazi prodanvc@df.uns

Planet Krypton = Flying/jumping?

- Planet Krypton at least 100 times larger than Earth so mass is 1.000.000 times greater!
- "New" Superman jumps/flys ever more = Krypton even bigger!
- Not a planet but a star
- Largest found (and possible) planet 10 times more massive than Earth!

http://planetquest.jpl.nasa.gov

- If Krypton was like the biggest "super Earth"-type planet Kepler 103-b
 - 10 times more massive than Earth
 - 2 times greater radius
 - Would jump only twice higher so about 5m ⁽³⁾
- If Krypton was like the densest planet found "PSR J1719-1438 b"
 - Mass 330 times greater
 - Radius 4 times greater
 - Would jump 20 times higher about 50m 🙂

Neuhäuser, Guenther, Wuchterl, Mugrauer, Bedalov, Hauschild

Faster than a bullet!?

- Bullet speed: v~1000 m/s
- 100m sprint record: Usein Bolt 9,58 sec v~10 m/s
- TOO LATE! LEW'S FINGER CONTRACTS DEADLY LEADEN MISSILE IS LAUNCHED AT WHAT --- 3 THE HELPLESS GIRL REPORTER WHO IN --? CROSS YOUR FINGERS, FOLKS SIMULTANEOUS WITH THE EXPLOSION, SUPERMAN SPRINTS PARALLEL WITH THE BULLET IN THE STRANGEST RACE THE WORLD HAS EVER SEEN !

 Superman 100 times faster than Usein Bolt!?

Speed and energy

- How much we spend on 10 km?
- (my) car uses ~ 1 litar
- Usein Bolt (94 kg) uses by running ~ 1100 calories
 - like 5 pljeskavica's of 100g
 - Like 2 chocolates of 100g

like 50.000 pljeskavica's!

like 20.000 chocolades!

Needs too much energy ⁽³⁾

- Superman uses ~ 11.000.000 calories
 - when running!
- **Fitness Facts** Calories burned per 1 hour Exercise Amount Running 560 490 Jogging Walking 245 Bicycling 420

Estimated amount of expended, calories based on example body weight of 155 lbs.

rza v Ljubljani

Power of "Yellow Sun"

- But!
- Superman gets energy from Sun
- Sun lights every m² as 14 100W light bulbs!

Superman would need to sunbathe for 12h to get energy that he needs for running

 If he absorbs energy 6 times
 better solar panels...

Stronger than locomotive!?

- Like dung beetle!
 - Strongest creature in nature
 - lifts 1000x its weight!
 - as Superman lifting 6
 full busses!

Onthophagus taurus

Bigger is weaker??

- Strenght vs mass
 - Dung beetle can lift largest weight compared to its mass
- Mass = volume
- Strength = surface (muscles)
- Duble the size =
 - 8x larger mass
 - 4x larger strength
- Larger organisms have less strength!

Superman as dung beetle?

- Dung Beetle (from Earth)
 - Mass 100g (depends on its lunch)
 - length L~3cm
 - strength/mass ~ 1/L~1/3
- Superman

v Ljubljani

- 180 cm tall (60x larger than dung bee
- 60x weaker than dung beetle
- Must be 60x less massive (less dense)
- Or must have 60x stronger muscles
 - If Krypton was the densest planet PSR J1719-1438 b, he would have 20x stronger muscles

- Accidental Superhero
 - Bitten by radioactive spider
- Powers of Peter Parker
 - genius
 - "super geek"
 - inventor (net thrower)

- Super powers
 - Climbs walls
 - Super strength
 - 6th sense
- Super science or super fiction?

Wall climbing

- Not all spiders!
 - Predator spiders
 - E.g. tarantula

"Sticking to walls"

Molecules attract and "stick"

– Van der Vaals force

- The larger the contact area the stronger the "sticking" is
- But things not smooth molecules are far away

"Brush" climbing

- A brush goes into cracks!
- Hairs on feet for clinging
 - Every hair has thousands of micro filaments
 - strong clinging
- More hairs better sticking

- 170 times their weight

• Geckos and spiders!

Super climbing?

• Possible! 🙂

za *v Ljubljani*

- Gloves with many hairs that super cling
- Synthetic nano materials that cling very strong

Super climbing

- … but only for geckoes ☺
- New studies of scientists from Cambridge show – man would have to wear spider shoes of size 145!

za *v Ljubljani*

Super possible - Super (im)possible

- Super trength possibe but body has to be less dense
- Climbing walls possible but only for small organisms

- Creating superpowers with radiation and mutations
- Flying
 - No engine
- Jumping over buildings
 No such planet
- Faster than bullet
 - Uses too much energy

The only thing we can do is...

- Become super geeks
- ...like Bruce Wayne or Kickass 😳

rza v Ljubljani

Tijana Prodanovic @ Gimnazija Murska Sol prodanvc@df.uns.ac.rs

Super hvala! 😳

